Application Notes

Beckman Biomek

  1. Full automation of the SISCAPA® workflow using a Biomek NXP Laboratory Automation Workstation (Beckman note AAG-2137APP11.16 - SISCAPA) 2017

Agilent BRAVO

  1.  Automated, High Precision Tryptic Digestion and SISCAPA-MS Quantification of Human Plasma Proteins Using the Agilent Bravo Automated Liquid Handling Platform (Agilent note 5991-4120EN) 2014
  2. High-Throughput SISCAPA-Based Peptide Quantitation Using an Agilent RapidFire High-Throughput Mass Spectrometry System (Agilent note 5991-0380EN) 2012

  3. High Sensitivity SISCAPA-based Peptide Quantitation Using UHPLC and the 6490 QQQ with iFunnel Technology (Agilent note 5990-8999EN) 2011

  4. Automation of a SISCAPA Magnetic Bead Workflow for Protein Biomarker Quantitation by Mass Spectrometry Using the Agilent Bravo Automated Liquid Handling Platform (Agilent note 5990-7360EN) 2011



From SISCAPA Assay Technologies

  1. Multiplexed longitudinal measurement of protein biomarkers in DBS using an automated SISCAPA workflow.  Razavi M, Anderson NL, Yip R, Pope ME, Pearson TW. Bioanalysis. 2016 Jul 15.
  2. Squeezing More Value From the Analytes We Have: Personal Baselines for Multiple Analytes in Serial DBS.  Anderson, NL, Razavi M, Skates S, Anderson NG, and Pearson TW. Bioanalysis 8:1539–42. doi:10.4155/bio-2016-0088.(2016)
  3. High precision quantification of human plasma proteins using the automated SISCAPA Immuno-MS workflow.  Razavi M, Anderson NL, Pope ME, Yip R, Pearson TW. N Biotechnol. 2016 Sep 25;33(5 Pt A):494-502.
  4. Quantification of a Proteotypic Peptide from Protein C Inhibitor by Liquid Chromatography-Free SISCAPA-MALDI Mass Spectrometry: Application to Identification of Recurrence of Prostate Cancer. Razavi, M. et al. Clin. Chem. 59:1514–1522 (2013)
  5. High-throughput SISCAPA quantitation of peptides from human plasma digests by ultrafast, liquid chromatography-free mass spectrometry.  Razavi, M. et al. J Proteome Res 11:5642–5649 (2012)
  6. The Precision of Heavy-Light Peptide Ratios Measured by MALDI-TOF Mass Spectrometry.  Anderson, N.L. et al. J. Proteome Res 1:1868–1878 (2012)
  7. MALDI Immunoscreening (MiSCREEN): a Method for Selection of Anti-Peptide Monoclonal Antibodies for Use in Immunoproteomics. Razavi M, Pope ME, Soste MV, Eyford BA, Jackson AM, Anderson NL, and Pearson TW. Journal of Immunological Methods 364, no. 1 (February 1, 2011): 50–64. doi:10.1016/j.jim.2010.11.001.
  8. Proteomic-Based Multiplex Assay Mock Submissions: Supplementary Material to A Workshop Report by the NCI-FDA Interagency Oncology Task Force on Molecular Diagnostics.  Regnier, F.E. et al.  Clin Chem. 56:165 - 171 (2010)
  9. The Clinical Plasma Proteome: a Survey of Clinical Assays for Proteins in Plasma and Serum.  Anderson, N. L.,  Clinical Chemistry 56: 177–85. doi:10.1373/clinchem.2009.126706. (2010)
  10. SISCAPA Peptide Enrichment on Magnetic Beads Using an Inline Beadtrap Device.  Anderson, N. L., et al.  Mol Cell Proteomics 8:995 - 1005 (2009)
  11. A Human Proteome Detection and Quantitation Project. Anderson, NL, Anderson NG, Pearson TW, Borchers CH, Paulovich AG, Patterson SG, Gillette M, Aebersold R, and Carr SA. Mol Cell Proteomics 8: 883–86. doi:10.1074/mcp.R800015-MCP200. (2009)
  12. Anti-Peptide Antibody Screening: Selection of High Affinity Monoclonal Reagents by a Refined Surface Plasmon Resonance Technique. Pope, ME, Soste MV, Eyford BA, Anderson NL, and Pearson TW. Journal of Immunological Methods 341: 86–96. doi:10.1016/j.jim.2008.11.004. (2009)
  13. Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers.  Whiteaker, J.R., et al.  Anal. Biochem. 362:44 - 54 (2007)
  14. A List of Candidate Cancer Biomarkers for Targeted Proteomics. Polanski, M, and Anderson NL.  Biomarker Insights 2 : 1–48. (2007)
  15. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins.  Anderson, N. L. and Hunter, C.L.  Mol. Cell. Proteomics 5: 573-588 (2006)
  16. The Roles of Multiple Proteomic Platforms in a Pipeline for New Diagnostics.  Anderson, N. L. Molecular & Cellular Proteomics : MCP 4: 1441–44. doi:10.1074/mcp.I500001-MCP200. (2005)
  17. Candidate-Based Proteomics in the Search for Biomarkers of Cardiovascular Disease.  Anderson, NL. J Physiology 563: 23–60. (2005)
  18. Mass Spectrometric Quantitation of Peptides and Proteins Using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA).  Anderson, N.L. et al.  J. Proteome Research 3:235-244 (2004)
  19. An effective and rapid method for functional characterization of immunoadsorbents using POROS® beads and flow cytometry.  Anderson, N.L., Haines, L.R. and Pearson, T.W.  J. Proteome Research 3:228 - 234 (2004)
  20. The human plasma proteome: History, character, and diagnostic prospects.  Anderson, N.L. and Anderson, N.G., Mol. Cell. Proteomics, 1:845-867 (2002)

From others

  1. Anti-peptide monoclonal antibodies generated for immuno-MRM assays have a high probability of supporting Western blot and ELISA. Schoenherr RM, et al. Molecular and Cellular Proteomics (2015) 14(2):382-98. PMCID:PMC4350033
  2. Quantitative Assessment of Human Serum Transferrin Receptor in Breast Cancer Patients Pre- and Post-chemotherapy using Peptide Immunoaffinity Enrichment Coupled with Targeted Proteomics.  Xu Q, et al. Clin Chim Acta. 2015 Jun 18. pii: S0009-8981(15)00289-2. doi: 10.1016/j.cca.2015.05.022.
  3. Detection of FGF15 in Plasma by Stable Isotope Standards and Capture by Anti-peptide Antibodies and Targeted Mass Spectrometry.  Katafuchi T, et al. Cell Metab. 2015 Jun 2;21(6):898-904. doi: 10.1016/j.cmet.2015.05.004.
  4. Quantification of serum apolipoproteins A-I and B-100 in clinical samples using an automated SISCAPA-MALDI-TOF-MS workflow.  van den Broek I, et al.  Methods. 2015 Jun 15;81:74-85. doi: 10.1016/j.ymeth.2015.03.001. Epub 2015 Mar 9. PMID: 25766926
  5. Identification of low-abundance cancer biomarker candidate TIMP1 from serum with lectin fractionation and peptide affinity enrichment by ultrahigh-resolution mass spectrometry.  Ahn YH, et al. Anal Chem. 2012 Feb 7;84(3):1425-31. doi: 10.1021/ac2024987. Epub 2012 Jan. PMID: 2219668
  6. Sequential protein and peptide immunoaffinity capture for mass spectrometry-based quantification of total human β-nerve growth factor.  Neubert, H. et al.  Anal. Chem. 85:1719-1726 (2013)
  7. Measurement of Thyroglobulin by Liquid Chromatography-TandemMass Spectrometry in Serum and Plasma in the Presence of Anti-thyroglobulin Autoantibodies.  Kushnir, M. M. et al. Clin. Chem. 59:982–990 (2013)
  8. Highly specific and sensitive measurements of human and monkey interleukin 21 using sequential protein and tryptic peptide immunoaffinity LC-MS/MS.  Palandra, J., et al.  Anal. Chem. 85:5522-5529 (2013)
  9. Sequential Multiplexed Analyte Quantification Using Peptide Immunoaffinity Enrichment Coupled to Mass Spectrometry.  Whiteaker, J. R. et al. Mol. Cell. Proteomics 11:M111.015347–M111.015347 (2012)
  10. Interlaboratory Evaluation of Automated, Multiplexed Peptide Immunoaffinity Enrichment Coupled to Multiple Reaction Monitoring Mass Spectrometry for Quantifying Proteins in Plasma.  Kuhn, E. et al. Mol. Cell. Proteomics 11:M111.013854–M111.013854 (2012)
  11. Quantification of proteins using peptide immunoaffinity enrichment coupled with mass spectrometry.  Zhao L, et al. J Vis Exp. 31:pii: 2812. doi: 10.3791/2812 (2011)
  12. Evaluation of Large Scale Quantitative Proteomic Assay Development Using Peptide Affinity-based Mass Spectrometry.  Jeffrey R. Whiteaker, J.R.  et al.  Mol Cell Proteomics 10: M110.005645 (2011)
  13. Online high-flow peptide immunoaffinity enrichment and nanoflow LC-MS/MS: assay development for total salivary pepsin/pepsinogen.  Neubert, H., Gale, J. and Muirhead, D. Clin. Chem. 56:1413 - 1423 (2010)
  14. Mass-spectrometry-based clinical proteomics--a review and prospective.  Parker, C. E., Pearson, T. W., Anderson, N. L. and Borchers, C. H. Analyst 135:1830–1838 (2010)
  15. An immunoaffinity liquid chromatography-tandem mass spectrometry assay for the quantitation of matrix metalloproteinase 9 in mouse serum.  Ocaña, M. F.  and Neubert, H. Anal. Biochem. 399:202 - 210 (2010)
  16. Quantitative analysis of an aberrant glycoform of TIMP1 from colon cancer serum by L-PHA-enrichment and SISCAPA with MRM mass spectrometry.  Ahn, Y. H. et al. J. Proteome Res. 8:4216 - 4224 (2009)
  17. Multiple Reaction Monitoring-Based, Multiplexed, Absolute Quantitation of 45 Proteins in Human Plasma. Kuzyk, MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, and Borchers CH. Mol. Cell. Proteomics 8 (August 2009): 1860–77. doi:10.1074/mcp.M800540-MCP200.
  18. Proteome wide screening using peptide affinity capture.  Poetz, O., Hoeppe, S., Templin, M. F., Stoll, D. and Joos, T. O.  Proteomics 9:1518 - 1523 (2009)
  19. Developing multiplexed assays for troponin I and Interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry.  Kuhn, E., Addona, T., Keshishian, H., Burgess, M., Mani, D.R., Lee, R.T., Sabatine, M.S., Gerszten, R.E. and Carr, S.A. Clin. Chem. 55:1108 - 1117 (2009)
  20. Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry.  Hoofnagle, A. N., Becker, J.O., Wener, M.H. and Heinecke, J.W.  Clin. Chem. 54:1796 - 1804 (2008)
  21. Antibody-Based Enrichment of Peptides on Magnetic Beads for Mass-Spectrometry-Based Quantification of Serum Biomarkers.  Whiteaker, J, Zhao L, Zhang H, Feng L, Piening B, Anderson L, and A Paulovich A.  Analytical Biochemistry 362: 44–54. doi:10.1016/j.ab.2006.12.023. (2007)
  22. Serum thyroglobulin: a model of immunoassay imperfection.  Hoofnagle, A. N. & Wener, M. H. Clin. Lab. Int.  12–14 (2006)